Robust estimation in joint mean–covariance regression model for longitudinal data

نویسندگان

  • Xueying Zheng
  • Wing Kam Fung
  • Zhongyi Zhu
چکیده

In this paper, we develop robust estimation for the mean and covariance jointly for the regression model of longitudinal data within the framework of generalized estimating equations (GEE). The proposed approach integrates the robust method and joint mean–covariance regression modeling. Robust generalized estimating equations using bounded scores and leverage-based weights are employed for the mean and covariance to achieve robustness against outliers. The resulting estimators are shown to be consistent and asymptotically normally distributed. Simulation studies are conducted to investigate the effectiveness of the proposed method. As expected, the robust method outperforms its non-robust version under contaminations. Finally, we illustrate by analyzing a hormone data set. By downweighing the potential outliers, the proposed method not only shifts the estimation in the mean model, but also shrinks the range of the innovation variance, leading to a more reliable estimation in the covariance matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Selection in Robust Joint Mean and Covariance Model for Longitudinal Data Analysis

In longitudinal data analysis, a correct specification of the within-subject covariance matrix cultivates an efficient estimation for mean regression coefficients. In this article, we consider robust variable selection method in a joint mean and covariance model. We propose a set of penalized robust generalized estimating equations to simultaneously estimate the mean regression coefficients, th...

متن کامل

Gaussian estimation and joint modeling of dispersions and correlations in longitudinal data

Analysis of longitudinal, spatial and epidemiological data often requires modelling dispersions and dependence among the measurements. Moreover, data involving counts or proportions usually exhibit greater variation than would be predicted by the Poisson and binomial models. We propose a strategy for the joint modelling of mean, dispersion and correlation matrix of nonnormal multivariate correl...

متن کامل

Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation

For longitudinal data, when the within-subject covariance is misspecified, the semiparametric regression estimator may be inefficient. We propose a method that combines the efficient semiparametric estimator with nonparametric covariance estimation, and is robust against misspecification of covariance models. We show that kernel covariance estimation provides uniformly consistent estimators for...

متن کامل

Semiparametric estimation of covariance matrices for longitudinal data.

Estimation of longitudinal data covariance structure poses significant challenges because the data are usually collected at irregular time points. A viable semiparametric model for covariance matrices was proposed in Fan, Huang and Li (2007) that allows one to estimate the variance function nonparametrically and to estimate the correlation function parametrically via aggregating information fro...

متن کامل

Semiparametric Mean–Covariance Regression Analysis for Longitudinal Data

Efficient estimation of the regression coefficients in longitudinal data analysis requires a correct specification of the covariance structure. Existing approaches usually focus on modeling the mean with specification of certain covariance structures, which may lead to inefficient or biased estimators of parameters in the mean if misspecification occurs. In this article, we propose a data-drive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013